• <menu id="4qso2"><strong id="4qso2"></strong></menu>
  • <nav id="4qso2"></nav>
  • 首页  >  科研动态  >  正文
    科研动态
    张维昊博士生杨文锋的论文在 Environmental Pollution 刊出
    发布时间:2021-05-27 17:50:07     发布者:易真     浏览次数:

    标题: Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure

    作者: Wenfeng Yang, Pan Gao, Guoyi Ma, Jiayi Huang, Yixiao Wu, Liang Wan, Huijun Ding, Weihao Zhang

    来源出版物: Environmental Pollution : 284 文献号: 117413 DOI: /10.1016/j.envpol.2021.117413 出版年:May 19 2021

    摘要: The toxicity of nanoplastics to aquatic organisms has been widely studied in terms of biochemical indicators. However, there is little discussion about the underlying toxic mechanism of nanoplastics on microalgae. Therefore, the chronic effect of polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa was investigated, in terms of responses at the biochemical and molecular/omic level. It was surprising that both inhibitory and promoting effects of nanoplastcis on C. pyrenoidosa were found during chronic exposure. Before 13 days, the maximum growth inhibition rate was 7.55% during 10 mg/L PS nanoplastics treatment at 9 d. However, the inhibitory effect gradually weakened with the prolongation of exposure time. Interestingly, algal growth was promoted for 1–5 mg/L nanoplastics during 15–21 d exposure. Transcriptomic analysis explained that the inhibitory effect of nanoplastics could be attributed to suppressed gene expression of aminoacyl-tRNA synthetase that resulted in the reduced synthesis of related enzymes. The promotion phenomenon may be due to that C. pyrenoidosa defended against nanoplastics stress by promoting cell proliferation, regulating intracellular osmotic pressure, and accelerating the degradation of damaged proteins and organs. This study is conducive to provide theoretical basis for evaluating the actual hazard of nanoplastics to aquatic organisms.

    语言: English

    文献类型: Article

    作者关键词: nanoplastics

    KeyWords: Chronic exposure; Inhibition effect; Microalgae; Nanoplastics; Promotion effect

    地址: [Wenfeng Yang, Guoyi Ma, Jiayi Huang, Yixiao Wu, Liang Wan, Weihao Zhang] Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

    [Pan Gao] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

    [Huijun Ding] Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang, Jiangxi 330029, PR China.

    通讯作者地址: weihao. zhang (通讯作者),Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.

    电子邮件地址: weihao.zhang@outlook.com.

    影响因子:6.792


    信息服务
    学院网站教师登录 学院办公电话 学校信息门户登录

    版权所有 ? 武汉大学资源与环境科学学院
    地址:湖北省武汉市珞喻路129号 邮编:430079 
    电话:027-68778381,68778284,68778296 传真:027-68778893    

    三级午夜理伦三级,琪琪网最新伦费观看2020动漫,办公室漂亮人妇在线观看 农村老熟妇乱子伦视频| 奇米影视777四色狠狠| 熟妇人妻无码中文字幕老熟妇| 欧洲男同GAY片AV| 和搜子居同的日子BD| 60歳の熟女セックス| 中文字幕人成乱码熟女免费| 丰满巨肥大屁股BBW| 欧美激情一区二区三区在线| 我要受不了了快添我的奶头|